Как и где происходит процесс фотосинтеза у растений? Зависимость процесса фотосинтеза от факторов внешней среды Скорость фотосинтеза зависит от лимитирующих факторов.

Эндогенные механизмы регуляции фотосинтеза.

Реализация фотосинтетической функции растения в целом определяется с одной стороны значительной автономностью хлоропластов, а с другой – сложной системой связей фотосинтеза со всеми функциями растения. В ходе онтогенеза в растительном организме всегда присутствуют аттрагирующие зоны (зоны, притягивающие питательные вещества). В аттрагирующих центрах происходит либо новообразование и рост структур, либо интенсивный однонаправленный синтез запасных веществ (клубни, плоды и др.). В обоих случаях состояние аттрагирующих центров определяет величину «запроса» на фотосинтез. Если внешние условия не лимитируют фотосинтез, то ведущая роль принадлежит аттрагирующим центрам. Чем мощнее центры, аттрагирующие ассимиляты, тем интенсивнее фотосинтез.

Второй. важный механизм регуляции фотосинтеза связан с фитогормонами и эндогенными ингибиторами роста и метаболизма. Фитогормоны образуются в разных частях растении, в том числе и хлоропластах, и действуют на процессы фотосинтеза как дистанционно, так и непосредственно на уровне хлоропластов. Дистанционное воздействие осуществляется благодаря регулирующему влиянию фитогормонов на процессы роста и развития, на отложение веществ в запас, на транспорт ассимилятов и т.д., т.е. на формирование и активность аттрагирующих центров. С другой стороны фитогормоны оказывают прямое действие на функциональную активность хлоропластов через изменение состояния мембран, активность ферментов, генерацию трансмембранного потенциала. Доказана также роль фитогормонов, в частности цитокинина, в биогенезе хлоропластов, синтезе хлорофиллов, ферментов ц.Кальвина.

На интенсивность фотосинтеза влияют такие факторы внешней среды, как: интенсивность и качество света, концентрация углекислого газа, температура, водный режим тканей растения, минеральное питание и др.

Интенсивность и спектральный состав света .

Листья высших растений поглощают свет в красной и синей областях спектра – лучи, наиболее эффективные для фотосинтеза.. Отражают листья зеленые лучи. Большая часть (60%) попадающего на лист солнечного излучения не может участвовать в фотохимических процессах, поскольку имеет длину волны, которая не поглощается пигментами листа. Часть света отражается поверхностью листа, рассеивается в виде тепла, тратится на процессы не связанные с фотосинтезом и только 1,5-5% расходуется на фотосинтез (фотосинтетически активная радиация - ФАР).

Зависимость скорости фотосинтеза от интенсивности света имеет форму логарифмической кривой. При низкой освещенности на световой кривой можно выделить точку, когда количество углекислоты, поглощаемой при фотосинтезе и выделяемой при дыхании, равны. Эта точка называется световым компенсационным пунктом (рис.) . Увеличение освещенности выше светового компенсационного пункта вызывает постепенное возрастание интенсивности фотосинтеза. При дальнейшем увеличении интенсивности кривая выходит на плато, сто свидетельствует о насыщении процесса связывания углекислоты. В этих условиях процесс фотосинтеза уже лимитируется только содержанием углекислого газа. У светолюбивых видов насыщение происходит при более высокой освещенности (10-40 тыс. люкс), чем у теневыносливых (1000 люкс).


Активность фотосинтеза в области насыщающей интенсивности света лимитилуется концентрацией СО2 и зависит от мощности системы поглощения и восстановления углекислоты. Чем выше способность растения к восстановлению СО 2 , тем выше проходит световая кривая фотосинтеза

Рис. Изменение интенсивности фотосинтеза у лебеды Atriplex triangularis, выращенной при различной освещенности.

Поэтому у С 3 -растений насыщение происходит при более низкой освещенности, чем у С 4 -растений, которые более эффективно связывают углекислоту.

СО 2 – основной субстрат фотосинтеза. Зависимость фотосинтеза от концентрации углекислоты описывается логарифмической кривой (рис). При концентрации 0,036% интенсивность фотосинтеза составляет лишь 50% и достигает максимума при 0,3%.

Рис. Зависимость интенсивности фотосинтеза от парциального давления СО 2

Многие биологические процессы, в которых участвуют газы (углекислый газ, кислород), определяются не концентрацией, а парциальным давлением. Например, если атмосферное давление 0,1МПа, то парциальное давление углекислого газа составит 36Па (оно вычисляется умножением молярного содержания газа на общее атмосферное давление 0,036х0,1МПа).

У С 3 -растений при низких концентрациях углекислоты количество СО 2 фиксированное при фотосинтезе, меньше чем количество СО 2 выделенное при дыхании. При повышении СО 2 можно зафиксировать точку, в которой суммарное поглощение углекислоты в фотосинтезе равно 0. Эта концентрация СО 2 называется углекислотным компенсационным пунктом . Это параметр характеризует соотношение между процессами фотосинтеза и дыхания в зависимости от содержания СО 2 в атмосфере.

Процесс фотосинтеза обычно осуществляется в аэробных условиях. При концентрации кислорода 21%. Увеличение содержания или отсутствие кислорода для фотосинтеза неблагоприятны.

Высокие концентрации кислорода снижают интенсивность фотосинтеза по следующим причинам: 1) повышение парциального давления активирует процесс фотодыхания (РБФ-карбоксилаза ц.Кальвина работает как оксигеназа); 20 кислород окисляет первичные восстановленные продукты фотосинтеза.

Температура

Зависимость интенсивности фотосинтеза от температуры имеет вид параболы с максимумом от 25 о -35 о С. Однако если концентрация углекислого газа в воздухе будет выше, то температурный оптимум сместится до 35-38 о С. Это объясняется тем, что именно при таких температурах активно идут ферментативные реакции (темновая фаза фотосинтеза) (рис.).

Рис. Зависимость интенсивности фотосинтеза от температуры: 1 – при высоком содержании углекислоты; 2 – при 0,036%

Водный режим

Вода непосредственно участвует в фотосинтезе как субстрат окисления и источник кислорода. С другой стороны, величина оводненности тканей определяет степень открывания устьиц и, следовательно, поступления СО 2 в лист. При полном насыщении листа водой устьица закрываются, что снижает интенсивность фотосинтеза. Поэтому незначительный водный дефицит благоприятен для фотосинтеза. В условиях засухи происходит закрывание устьиц под влиянием абсцизовой кислоты, которая накапливается в листьях. Длительный водный дефицит приводит к ингибированию нециклического и циклического транспорта электронов и фотофосфорилирования.

Минеральное питание

Для нормального функционирования фотосинтетического аппарата растение должно быть обеспечено всем комплексом макро- и микроэлементов. Зависимость фотосинтеза от элементов минерального питания определяется их необходимостью для формирования фотосинтетического аппарата (пигментов, компонентов ЭТЦ, структурных и транспортных белков).

Магний входит в состав хлорофиллов, участвует в деятельности сопрягающих белков при синтезе АТР, влияет на активность реакций карбоксилирования и восстановления NADP+.

Железо необходимо для функционирования цитохромов, ферредоксина (компоненты ЭТЦ). Недостаток железа нарушает функционирование циклического и нециклического фотофосфорилирования, синтез пигментов, нарушает структуру хлоропластов.

Марганец и хлор необходимы для фотолиза воды.

Медь входит в состав пластоцианина.

Азот входит в состав хлорофиллов, аминокислот. Недостаток его сказывается активности фотосинтеза в целом.

Фосфор необходим для фотохимических и темновых реакций фотосинтеза. Отрицательно сказываются как недостаток, так и избыток его (нарушается проницаемость мембран)

Калий необходим для формирования гранистой структуры хлоропластов, работы устьиц, поглощения клетками воды. При недостатке калия нарушаются все процессы фотосинтеза.

Как происходит преобразование энергии солнечного света в световой и темновой фазах фотосинтеза в энергию химических связей глюкозы? Ответ поясните.

Ответ

В световой фазе фотосинтеза энергия солнечного света преобразуется в энергию возбужденных электронов, а затем энергия возбужденных электронов преобразуется в энергию АТФ и НАДФ-Н2 . В темновой фазе фотосинтеза энергия АТФ и НАДФ-Н2 преобразуется в энергию химических связей глюкозы.

Что происходит в световую фазу фотосинтеза?

Ответ

Электроны хлорофилла, возбужденные энергией света, идут по электроно-транспортным цепям, их энергия запасается в АТФ и НАДФ-Н2 . Происходит фотолиз воды, выделяется кислород.

Какие основные процессы происходят в темновую фазу фотосинтеза?

Ответ

Из углекислого газа, полученного из атмосферы, и водорода, полученного в световой фазе, за счет энергии АТФ, полученной в световой фазе, образуется глюкоза.

Какова функция хлорофилла в растительной клетке?

Ответ

Хлорофилл участвует в процессе фотосинтеза: в световой фазе хлорофилл поглощает свет, электрон хлорофилла получает энергию света, отрывается и идет по электроно-транспортной цепи.

Какую роль играют электроны молекул хлорофилла в фотосинтезе?

Ответ

Электроны хлорофилла, возбужденные солнечным светом, проходят по электронотранспортным цепям и отдают свою энергию на образование АТФ и НАДФ-Н2 .

На каком этапе фотосинтеза образуется свободный кислород?

Ответ

В световой фазе, во время фотолиза воды.

В какую фазу фотосинтеза происходит синтез АТФ?

Ответ

Всветовую фазу.

Какое вещество служит источником кислорода во время фотосинтеза?

Ответ

Вода (кислород выделяется при фотолизе воды).

Скорость фотосинтеза зависит от лимитирующих (ограничивающих) факторов, среди которых выделяют свет, концентрацию углекислого газа, температуру. Почему эти факторы являются лимитирующими для реакций фотосинтеза?

Ответ

Свет необходим для возбуждения хлорофилла, он поставляет энергию для процесса фотосинтеза. Углекислый газ необходим в темновой фазе фотосинтеза, из него синтезируется глюкоза. Изменение температуры ведет к денатурации ферментов, реакции фотосинтеза замедляются.

В каких реакциях обмена у растений углекислый газ является исходным веществом для синтеза углеводов?

Ответ

В реакциях фотосинтеза.

В листьях растений интенсивно протекает процесс фотосинтеза. Происходит ли он в зрелых и незрелых плодах? Ответ поясните.

Ответ

Фотосинтез происходит в зеленых частях растений на свету. Таким образом, фотосинтез происходит в кожице зеленых плодов. Внутри плодов и в кожице спелых (не зеленых) плодов фотосинтез не происходит.

Из всех факторов одновременно влияющих на процесс фотосинтеза лимитирующим будет тот, который ближе к минимальному уровню. Это установил Блэкман в 1905 году . Разные факторы могут быть лимитными, но один из них главный.

1. При низкой освещенности скорость фотосинтеза прямопропорциональна интенсивности света. Свет – лимитирующий фактор при низкой освещенности. При большой интенсивности света происходит обесцвечивание хлорофилла и фотосинтез замедляется. В таких условиях в природе растения обычно защищены (толстая кутикула, опушенные листья, чешуйки).

  1. Для темновых реакций фотосинтеза необходим углекислый газ , который включается в органические вещества, в полевых условиях является лимитирующим фактором. Концентрация СО 2 варьирует в атмосфере в пределах от 0,03–0,04%, но если повысить ее, то можно увеличить скорость фотосинтеза. Некоторые тепличные культуры сейчас выращиваются при повышенном содержании СО 2 .
  2. Температурный фактор . Темновые и некоторые световые реакции фотосинтеза контролируются ферментами, а их действие зависит от температуры. Оптимальная температура для растений умеренного пояса составляет 25 °С. При каждом повышении температуры на 10 °С (вплоть до 35 °С) скорость реакций удваивается, но из-за влияния ряда иных факторов растения лучше растут при 25 °С.
  3. Вода – исходное вещество для фотосинтеза. Недостаток воды влияет на многие процессы в клетках. Но даже временное увядание приводит к серьезным потерям урожая. Причины: при увядании устьица растений закрываются, а это мешает свободному доступу СО 2 для фотосинтеза; при нехватке воды в листьях некоторых растений накапливается абсцизовая кислота . Это гормон растений – ингибитор роста. В лабораторных условиях ее используют для изучения торможения ростового процесса.
  4. Концентрация хлорофилла . Количество хлорофилла может уменьшаться при заболеваниях мучнистой росой, ржавчиной, вирусными болезнями, недостатком минеральных веществ и возрастом (при нормальном старении). При пожелтении листьев наблюдаются хлоротичные явления или хлороз . Причиной может быть недостаток минеральных веществ. Для синтеза хлорофилла нужны Fe, Mg, N и К.
  5. Кислород . Высокая концентрация кислорода в атмосфере (21%) ингибирует фотосинтез. Кислород конкурирует с углекислым газом за активный центр фермента, участвующего в фиксации СО 2 , что снижает скорость фотосинтеза.
  6. Специфические ингибиторы . Лучший способ погубить растение – это подавить фотосинтез. Для этого ученые разработали ингибиторы – гербициды – диоксины. Например:ДХММ – дихлорфенилдиметилмочевина – подавляет световые реакции фотосинтеза. Успешно используют для изучения световых реакций фотосинтеза.
  7. Загрязнение окружающей среды . Газы промышленного происхождения, озон и сернистый газ, даже в малых концентрациях сильно повреждают листья у ряда растений. К сернистому газу очень чувствительны лишайники. Поэтому существует метод лихеноиндикации – определение загрязнения окружающей среды по лишайникам. Сажа забивает устьица и уменьшает прозрачность листовой эпидермы, что снижает скорость фотосинтеза.

6. Факторы жизни растений, тепло, свет, воздух, вода - Растения в течение всей своей жизни постоянно находятся во взаимодействии с внешней средой. Требования растений к факторам жизни определяются наследственностью растений, и они различны не только для каждого вида, но и для каждого сорта той или иной культуры. Вот почему глубокое знание этих требований дает возможность правильно устанавливать структуру посевных площадей, чередование культур, размещение севооборотов .
Для нормальной жизнедеятельности растениям необходимы свет, тепло, вода, питательные вещества, включая углекислоту и воздух.
Основным источником света для растений является солнечная радиация. Хотя этот источник находится вне влияния человека, степень использования световой энергии солнца для фотосинтеза зависит от уровня агротехники: способов посева (направление рядков с севера на юг или с востока на запад), дифференцированных норм высева, обработки почвы и др.
Своевременное прореживание растений и уничтожение сорняков улучшают освещенность растений.
Тепло в жизни растений , наряду со светом представляет основной фактор жизни растений и необходимое условие для биологических, химических и физических процессов в почве. Каждое растение на различных фазах и стадиях развития предъявляет определенные, но неодинаковые требования к теплу, изучение которых составляет одну из задач физиологии растений и научного земледелия. тепло в жизни растений влияет на скорость развития в каждой стадии роста. В задачу земледелия входит также изучение теплового режима почвы и способов его регулирования.
Вода в жизни растений и питательные вещества, за исключением углекислоты, поступающей как из почвы, так и из атмосферы, представляют почвенные факторы жизни растений. Поэтому воду и питательные вещества называют элементами плодородия почвы.
Воздух в жизни растений (атмосферный и почвенный) необходим как источник кислорода для дыхания растений и почвенных микроорганизмов, а также как источник углерода, который растение усваивает в процессе фотосинтеза. Кроме того, Воздух в жизни растений необходим для микробиологических процессов в почве, в результате которых органическое вещество почвы разлагается аэробными микроорганизмами с образованием растворимых минеральных соединений азота, фосфора, калия и других элементов питания растений.



7 . Показатели фотосинтетической продуктивности посева

Урожай создается в процессе фотосинтеза, когда в зеленых рас­ тениях образуется органическое вещество из диоксида углерода, воды и минеральных веществ. Энергия солнечного луча переходит в энергию растительной биомассы. Эффективность этого процес­ са и в конечном счете урожай зависят от функционирования посе­ ва как фотосинтезирующей системы. В полевых условиях посев (ценоз) как совокупность растений на единице площади представляет собой сложную динамическую саморегулирующуюся фотосинтезирующую систему. Эта система включает в себя много компонентов, которые можно рассматри­ вать как подсистемы; она динамическая, так как постоянно меняет свои параметры во времени; саморегулирующаяся, так как, не­ смотря на разнообразные воздействия, посев изменяет свои пара­ метры определенным образом, поддерживая гомеостаз.

Показатели фотосинтетической деятельности посевов. Посев представляет собой оптическую систему, в которой листья погло­ щают ФАР. В начальный период развития растений ассимиляци­ онная поверхность невелика и значительная часть ФАР проходит мимо листьев, не улавливается ими. С повышением площади лис­ тьев увеличивается и поглощение ими энергии солнца. Когда ин­ декс листовой поверхности* составляет 4...5, т. е. площадь листьев в посеве 40...50 тыс. м 2 /га, поглощение ФАР листьями посева до­ стигает максимального значения - 75...80 % видимой, 40 % общей радиации. При дальнейшем увеличении площади листьев погло­ щение ФАР не повышается. В посевах, где ход формирования площади листьев оптималь­ ный, поглощение ФАР может составить в среднем за вегетацию 50...60 % падающей радиации. Поглощенная растительным по­ кровом ФАР - энергетическая основа для фотосинтеза. Однако в урожае аккумулируется только часть этой энергии. Коэффици­ ент использования ФАР обычно определяют по отношению к па­ дающей на растительный покров ФАР. Если в урожае биомассы в средней полосе России аккумулировано 2...3 % прихода на посев ФАР, то сухая масса всех органов растений составит 10... 15 т/га, а возможная урожайность - 4...6 т зерна с 1 га. В изреженных по­ севах коэффициент использования ФАР составляет всего 0,5...1,0%.

При рассмотрении посева как фотосинтезирующей системы урожай сухой биомассы, создаваемый за вегетационный период, или его прирост за определенный период зависит от величины средней площади листьев, продолжительности периода и чистой продуктивности фотосинтеза за этот период.

У = ФП ЧПФ,

где У -урожайность сухой биомассы, т/га;

ФП- фотосинтетический потенциал, тыс. м 2 - дни/га;

ЧПФ -чистая продуктивность фотосинтеза, г/(м2 - дни).

Фотосинтетический потенциал рассчитывают по формуле

где Sc - средняя за период площадь листьев, тыс. м 2 /га;

Т - продолжительность периода, дни.

Основные показатели для ценоза, как и урожайность, опреде­ ляют в расчете на единицу площади -1м 2 или 1 га. Так, площадь листьев измеряют в тыс. м 2 /га. Кроме того, пользуются таким по­ казателем, как индекс листовой поверхности. Основную часть ассимиляционной поверхности составляют листья, именно в них осуществляется фотосинтез. Фотосинтез мо­ жет происходить и в других зеленых частях растений - стеблях, остях, зеленых плодах и т. п., однако вклад этих органов в общий фотосинтез обычно небольшой. Принято сравнивать посевы меж­ ду собой, а также различные состояния одного посева в динамике по площади листьев, отождествляя ее с понятием «ассимиляцион­ ная поверхность». Динамика площади листьев в посеве подчиняется определен­ ной закономерности. После появления всходов площадь листьев медленно повышается, затем темпы нарастания увеличиваются. К моменту прекращения образования боковых побегов и роста ра­ стений в высоту площадь листьев достигает максимальной за веге­ тацию величины, затем начинает постепенно снижаться в связи с пожелтением и отмиранием нижних листьев. К концу вегетации в посевах многих культур (зерновые, зерновые бобовые) зеленые листья на растениях отсутствуют. Площадь листьев различных сельскохозяйственных растений может сильно варьировать в течение вегетации в зависимости от условий водоснабжения, питания, агротехнических приемов. Максимальная площадь листьев в засушливых условиях достигает всего 5... 10 тыс. м 2 /га, а при избыточных увлажнении и азотном питании она может превышать 70 тыс. м 2 /га. Считается, что при индексе листовой поверхности 4...5 посев как оптическая фото- синтезирующая система работает в оптимальном режиме, поглощая наибольшее количество ФАР. При меньшей площа­ ди листьев часть ФАР лис­ тья не улавливают. Если площадь листьев больше 50 тыс. м 2 /га, то верхние ли­ стья затеняют нижние, их доля в фотосинтезе резко снижается. Более того, вер­ хние листья «кормят» ниж­ ние, что невыгодно для формирования плодов, се­ мян, клубней и т. д. Динамика площади лис­ тьев показывает, что на разных этапах вегетации посев как фотосинтезиру- ющая система функциони­ рует неодинаково (рис. 3). Первые 20...30 дней вегетации, когда средняя площадь листьев составляет 3...7 тыс. м 2 /га, большая часть ФАР не улавливается листьями, и поэтому коэффициент использования ФАР не может быть высоким. Далее площадь ли­ стьев начинает быстро нарастать, достигая максимума. Как пра­ вило, это происходит у мятликовых в фазе молочного состояния зерна, у зерновых бобовых в фазе полного налива семян в сред­ нем ярусе, у многолетних трав в фазе цветения. Затем площадь листьев начинает быстро снижаться. В это время преобладают перераспределение и отток веществ из вегетативных органов в генеративные. На продолжительность этих периодов и их соотношение влияют различные факторы, в том числе агротехнические. С их помощью можно регулировать процесс нарастания площади листьев и продол­ жительность периодов. В засушливых условиях густоту растений, а следовательно, и площадь листьев намеренно снижают, так как при большой площади листьев усиливается транспирация, растения сильнее страдают от недостатка влаги, урожайность уменьшается.

При оценке действия внешних факторов необходимо различать два уровня. Первый их них генетический, который определяется влиянием факторов на генетический аппарат и экспрессию генов. Второй уровень обусловлен прямым действием внешних факторов на отдельные реакции фотосинтеза. Ответная реакция организма на изменение внешних факторов может быть быстрой, когда определяется непосредственно их воздействие на фотосинтетический аппарат, и более медленной, когда в новых условиях происходит формирование структур. Действие экзогенных факторов взаимосвязано и взаимообусловлено и реализуется через конкретные механизмы, сопряженные со всем комплексом физических, фотохимических и энзиматических реакций фотосинтеза. Познание этих механизмов необходимо для глубокого понимания основных закономерностей и оптимальных условий функционирования фотосинтетического аппарата как целостной системы.

Рассмотрим отдельно влияние на фотосинтез основных факторов внешней среды, хотя в природе они действуют на растение одновременно, и продуктивность растения является интегральной функцией совместного действия ряда экологических факторов.

Влияние интенсивности и спектрального состава света на фотосинтез

Интенсивность света и фотосинтез. Зависимость фотосинтеза о т л у ч и с т о й энергии является наиболее очевидной и существенной. Уже в ранних работах К.А.Тимирязева и других исследователей установлено отсутствие линейной зависимости между активностью процесса фотосинтеза и напряженностью действующего фактора. Зависимость активности фотосинтеза от интенсивности света -- световая кривая фотосинтеза -- имеет форму логарифмической кривой. Прямая зависимость скорости процесса от притока энергии имеет место только при низких интенсивностях света. В области насыщающих интенсивностей света дальнейшее увеличение освещенности не увеличивает скорость фотосинтеза.

Эти данные послужили основанием для представлений о включении в процесс фотосинтеза наряду с фотохимическими, световыми реакциями также темновых, энзиматических реакций, ограничивающее действие которых начинает проявляться особенно заметно при высоких, насьпдающих интенсивностях света. Результаты опытов А. А. Рихтера и Р. Эмерсона с прерывистым светом позволили оценить скорость световых и темновых реакций фотосинтеза: соответственно 10-5 и 10-2 с. Эти значения были полностью подтверждены в лаборатории Х.Витта (Witt, 1966) с использованием высокочувствительных методов импульсной спектрофотометрии.

При проведении физиологических исследований анализ световой кривой фотосинтеза дает информацию о характере работы фотохимических систем и ферментативного аппарата. Угол наклона кривой характеризует скорость фотохимических реакций: чем он больше, тем активнее система использует энергию света. По углу наклона линейного участка можно вести приближенные расчеты расхода квантов на восстановление моля С02. Скорость фотосинтеза в области насыщающей интенсивности света характеризует мощность систем поглощения и восстановления С02 и в значительной мере определяется концентрацией углекислоты в среде. Чем выше расположена кривая в области насыщающих интенсивностей света, тем более мощным аппаратом поглощения и восстановления углекислоты обладает система.

Минимальная интенсивность света, при которой возможен фотосинтез, различна у разных групп растений. Определенное практическое значение имеет световой компенсационный пункт (СКП) -- уровень освещения, когда интенсивности газообмена в процессах фотосинтеза и дыхания равны. Только при интенсивности света свыше СКП устанавливается положительный баланс углерода. Положение светового компенсационного пункта определяется генотипом растения и зависит от соотношения фотосинтеза и темнового дыхания. Любое усиление темнового дыхания, например при повышении температуры, увеличивает значение СКП. У С4-растений световой компенсационный пункт расположен выше, чем у С3-растений, у теневыносливых растений он ниже, чем у светолюбивых.

Повышение интенсивности света до определенного уровня действует в первую очередь на фотохимические реакции хлоропластов. При освещении сначала включается нециклический транспорт электронов. По мере увеличения скорости электронного потока и насыщения электронных пулов часть электронов переключается на образование циклических потоков. Переключение связано с восстановлением переносчиков, занимающих ключевое положение в ЭТЦ (к ним относятся пул пластохинонов, ферредоксин), и изменением конформации редокс-агентов. В условиях избыточной освещенности циклический транспорт электронов может играть защититную роль в хлоропластах, а также служить источником энергии для дополнительного синтеза АТФ и таким образом способствовать активации процессов ассимиляции углерода в хлоропластах и адаптационных процессов в растении.

При увеличении интенсивности светового потока и скорости транспорта электронов возрастает активность фотовосстановления НАДФ+ и синтеза АТФ. Скорость образования восстановленных коферментов активируется в большей степени, чем синтез АТФ, что приводит к некоторому снижению отношения АТФ/НАДФН при увеличении интенсивности света. Изменение соотношения энергетического и восстановительного потенциалов является одним из факторов, определяющих зависимость от интенсивности освещения характера метаболизма углерода и соотношение продуктов фотосинтеза. При низком уровне освещения (около 2000 люкс) образуются главным образом вещества неуглеводной природы (аминокислоты, органические кислоты), при высокой интенсивности света главную часть конечных продуктов фотосинтеза составляют углеводы (сахароза и др.). Интенсивность освещения определяет характер формирующихся фотосинтезируюших структур. В условиях интенсивного освещения формируется большое число более мелких фотосинтетических единиц что характерно для высокоактивных систем, увеличивается отношение хлорофиллов а/b.

С3- и С4-группы растений существенно различаются по зависимости процесса фотосинтеза от интенсивности света. Сравнение хода кривых показывает, что высокий уровень фотосинтеза, свойственный С4-растениям, проявляется главным образом при высоких уровнях освещенности.

Спектральный состав света. Помимо интенсивности существенное значение для фотосинтеза имеет спектральный состав света. Основные закономерности действия на фотосинтез лучей разных длин волн были установлены К. А. Тимирязевым. Дальнейшие исследования показали, что интенсивность фотосинтеза в участках спектра, выровненных по количеству энергии, различна: наиболее высокая интенсивность фотосинтеза отмечена в красных лучах (O.Warburg, Е.Negelein, 1923; Е.Gabrielsen, 1935, и др.).

Спектр действия фотосинтеза (кривая его зависимости от длины волны падающего света) при выровненном числе квантов имеет два четко выраженных максимума -- в красной и синей части спектра, аналогичных максимумам поглощения хлорофилла. Следовательно, красные и синие лучи наиболее эффективны в фотосинтезе. Анализ кривой квантового выхода фотосинтеза в зависимости от длины волны показывает, что он имеет близкие значения в диапазоне длин волн 580 -- 680 нм (около 0,11). В сине-фиолетовой части спектра (400 -- 490 нм), поглощаемой наряду с хлорофиллами также и каротиноидами, квантовый выход снижается (до 0,06), что связывают с менее продуктивным использованием энергии, поглощаемой каротиноидами. В дальней красной области спектра (более 680 нм) наблюдается резкое снижение квантового выхода. Явление «красного падения» фотосинтеза и последующие опыты Р. Эмерсона, показавшие усиление фотосинтеза при дополнительном освещении коротковолновым светом («эффект усиления»), привели к одному из фундаментальных положений современного фотосинтеза о последовательном функционировании двух фотосистем.

Качество света, как показали многолетние исследования Н.П.Воскресенской (1965--1989), оказывает сложное и разностороннее влияние на фотосинтез. Синий свет по сравнению с красным (выравненный по числу квантов) оказывает специфическое действие на фотосинтетический аппарат растений. На синем свету более активна общая ассимиляция С02, что обусловлено активирующим действием синего света на процессы электронного транспорта и на реакции углеродного цикла. В системе, где донором электронов служила вода, синий свет повышал активность фотовосстановления НАДФ+ почти в два раза по сравнению с активностью этой реакции у растений на красном свету. Спектральный состав света определяет состав продуктов, синтезируемых при фотосинтезе: на синем свету преимущественно синтезируются органические кислоты и аминокислоты, а позднее -- белки, тогда как красный свет индуцировал синтез растворимых углеводов, а со временем -- крахмала. Отмечено регулирующее действие синего света на активность ферментов фотосинтетического превращения углерода. У растений, выращенных на синем свету, обнаружена более высокая активность РуБФ-карбоксилазы, глицеральдегидфосфатдегидрогеназы, гликолатоксидазы, глиоксилатаминотрансферазы. Отмеченные в работе изменения активности ферментов связаны с активирующим действием синего света на синтез белков de novo. Вопрос о природе фоторецепторов синего света остается неясным. В качестве возможных акцепторов предполагаются флавины, каротиноиды, фитохромная система.

Влияние концентрации углекислоты на фотосинтез

Углекислый газ воздуха является субстратом фотосинтеза. Доступность С02 и его концентрация определяют активность углеродного метаболизма растений. В воздухе концентрация С02 составляет 0,03 %. Вместе с тем установлено, что максимальная скорость фотосинтеза достигается при концентрации углекислого газа на порядок выше (около 0,3 -- 0,5 %). Таким образом, концентрация С02 -- один из ограничивающих факторов фотосинтеза. Лимитирующее действие концентрации углекислого газа особенно проявляется при высоких интенсивностях света, когда фотохимические реакции производят максимально возможное количество НАДФН и АТФ, необходимых для метаболизма углерода в растении.

Как видно из рис, зависимость интенсивности фотосинтеза от концентрации С02 имеет логарифмический характер. Увеличение концентрации С02 приводит к быстрому увеличению интенсивности фотосинтеза. При концентрации С02 0,06--0,15 % у большинства растений достигается насыщение фотосинтеза. Увеличение интенсивности фотосинтеза при повышении концентрации С02 обусловлено реализацией в этих условиях потенциальной карбоксилазной активности Рубиско и созданием в хлоропластах большого пула акцептора С02 -- рибулозобисфосфата.

Увеличение концентрации С02 одновременно с повышением интенсивности света приводит к сдвигу насыщающей концентрации С02 в область еще больших концентраций (вплоть до 0,5%) и к значительному увеличению ассимиляции углерода растениями. Однако длительное выдерживание растений при высоких концентрациях углекислого газа может привести к «перекорму» растений и ингибированию фотосинтеза.

Концентрация углекислоты, при которой поглощение углекислого газа при фотосинтезе уравновешивает выделение его в ходе дыхания (темнового и светового), называется углекислотным компенсационным пунктом (УКП). У разных видов растений положение УКП может существенно различаться. Особенно выражены различия между С3- и С4-растениями. Так, у С3-растений УКП находится при довольно высоких концентрациях С02 (около 0,005 %), что связано с наличием активного фотодыхания у этой группы растений. С4-растения, обладающие способностью фиксировать С02 через фермент ФЕП-карбоксилазу, производят рефиксацию углекислого газа при слабом фотодыхании. Поэтому у С4-растений УКП приближается к нулевой концентрации С02 (ниже 0,0005 % С02). При увеличении концентрации С02 выше компенсационного пункта интенсивность фотосинтеза быстро возрастает.

В естественных условиях концентрация С02 довольно низка (0,03 %, или 300 мкл/л), поэтому диффузия С02 из атмосферы во внутренние воздушные полости листа очень затруднена. В этих условиях низких концентраций углекислоты существенная роль в процессе ее ассимиляции при фотосинтезе принадлежит ферменту карбоангидразе, значительная активность которой обнаружена у С3-растений. Карбоангидраза способствует повышению концентрации С02 в хлоропластах, что обеспечивает более активную работу РуБФ-карбоксилазы.

Карбоксилирующий потенциал РуБФ-карбоксилазы существенно изменяется в зависимости от концентрации С02. Как правило, максимальная активность РуБФ-карбоксилазы достигается при концентрациях С02, значительно превышающих содержание ее в атмосфере. Анализ кинетики фотосинтеза в листьях в зависимости от концентрации С02 показал, что при одних и тех же концентрациях углекислоты активность РуБФ-карбоксилазы значительно выше, чем интенсивность фотосинтеза. Это обусловлено лимитирующим действием на фотосинтез ряда факторов: сопротивления диффузии С02 через устьица и водную фазу, активности фотодыхания и фотохимических процессов. У С4-растений ФЕП-карбоксилаза, использующая в качестве субстрата HCO3-, при насыщающих концентрациях субстратов (HCO3-, ФЕП) характеризуется высокими значениями vmax, достигающими 800-- 1200 мкмоль.мг Хл-1ч-1, что значительно превышает скорость фотосинтеза в листьях (Дж. Эдварде, Д.Уокер, 1986).

Низкая концентрация углекислоты в атмосфере часто является фактором, ограничивающим фотосинтез, особенно при высокой температуре и в условиях водного дефицита, когда уменьшается растворимость С02 и возрастает устьичное сопротивлениерастение высоких концентраций С02 после временной активации фотосинтеза наступает его торможение вследствие разбаланса донорно-акцепторных систем. Происходящие вслед за этим морфо-генетические изменения, связанные с активирующим действием С02 на ростовые процессы, восстанавливают функциональные донорно-акцепторные взаимодействия. С02 оказывает регуляторное действие на ростовую функцию. Выдерживание растений при высоких концентрациях С02 сопровождается увеличением площади листьев, стимуляцией роста побегов 2-го порядка, возрастанием доли корней и запасающих органов, усилением клубнеобразования. Прирост биомассы при подкормке С02 происходит адекватно приросту площади листьев. В результате повышение концентрации С02 в атмосфере приводит к увеличению биомассы растения. Известным приемом повышения интенсивности и продуктивности фотосинтеза служит увеличение концентрации С02 в теплицах. Этот метод позволяет повысить прирост сухого вещества более чем в 2 раза.

Следует отметить также регуляторное действие углекислоты на первичные процессы фотосинтеза. Работами последних лет показано, что С02 регулирует скорость транспорта электронов на уровне фотосистемы II. Центры связывания углекислоты находятся на белке D1 вблизи QB. Следовые количества С02, связанные в этих центрах, изменяя конформацию белка, обеспечивают высокую активность электронного транспорта в ЭТЦ на участке между ФС II и ФСI.

Структурная организация листа, свойства его поверхности, число и степень открытости устьиц, а также градиент концентрации углекислого газа определяют возможность поступления углекислого газа к карбоксилирующим ферментам. Основными параметрами, определяющими диффузию углекислого газа к хлоропластам, являются сопротивление пограничной поверхности листа, устьиц и клеток мезофилла. Сопротивление пограничных поверхностей прямо пропорционально площади поверхности листа и обратно пропорционально скорости ветра. Вклад сопротивления пограничных поверхностей относительно невелик (около 8 -- 9 % от общего сопротивления листа диффузии С02). Сопротивление устьиц примерно в 10 раз больше, чем сопротивление пограничных поверхностей. Оно прямо пропорционально глубине устьиц и обратно пропорционально числу устьиц и размеру устьичных щелей. Все факторы, способствующие открыванию устьиц, будут снижать устьичное сопротивление. При расчете сопротивления устьиц учитывается также коэффициент диффузии С02. Его увеличение приводит к снижению сопротивления устьиц. Сопротивление мезофилла определяется диффузионными процессами, связанными с концентрационными градиентами углекислоты в отдельных структурах листа, сопротивлением клеточных стенок, скоростью движения цитоплазмы, активностью и кинетическими характеристиками карбоксилирующих ферментов и др.

Влияние кислорода на процесс фотосинтеза

Зависимость фотосинтеза от концентрации кислорода в среде довольно сложна. Как правило, процесс фотосинтеза высших растений осуществляется в аэробных условиях при концентрации кислорода около 21 %. Исследования показали, что как увеличение концентрации кислорода, так и отсутствие его неблагоприятны для фотосинтеза.

Действие кислорода зависит от его концентрации, вида и физиологического состояния растения, других условий внешней среды. Обычная концентрация кислорода в атмосфере (21 %) не является оптимальной, а значительно превышает последнюю. Поэтому снижение парциального давления кислорода до 3 % практически не сказывается отрицательно на фотосинтезе, а в ряде случаев может даже активировать его. У растений различных видов снижение концентрации кислорода вызывает неодинаковый эффект. Так, по данным А.А Ничипоровича (1973), уменьшение концентрации кислорода от 21 до 3 % сказывалось благоприятно на растениях с активным фотодыханием (бобы). Для кукурузы, у которой фотодыхание почти отсутствует, не отмечено изменений в интенсивности фотосинтеза при переходе от 21 до 3 % 02.

Неоднозначное и часто противоположное влияние разных концентраций кислорода на фотосинтез обусловлено тем, что конечный эффект зависит от направленности действия нескольких механизмов. Известно, что присутствие кислорода необходимо дляпотоке кислород, конкурируя за электроны, также снижает эффективность работы ЭТЦ.

Другим достаточно хорошо изученным механизмом действия кислорода на фотосинтез является его влияние на ключевой фермент фотосинтеза -- РуБФ-карбоксилазу. Хорошо установлено ингибирующее действие высоких концентраций 02 на карбоксилазную функцию фермента и активирующее действие на его оксигеназную функцию (на скорость фотодыхания). В зависимости от концентрации С02 в среде ингибирующее действие высоких концентраций кислорода на фотосинтез может проявиться в большей или меньшей степени. Этот механизм лежит в основе явления, известного как «эффект Варбурга». В 1920 г. Варбург впервые обнаружил ингибирующее действие высоких концентраций кислорода на фотосинтез водоросли Chlorella. Эффект Варбурга отмечен для многих видов высших растений (O.Bjorkman, 1966), а также при исследовании фиксации С02 изолированными хлоропластами (R.Everson, M.Gibbs, 1967). Кислородное ингибирование фотосинтеза, по мнению многих исследователей, обусловлено двумя составляющими -- прямым ингибированием РуБФ-карбоксилазы за счет высоких концентраций 02 и активацией процесса фотодыхания. При повышении концентрации С02 в атмосфере степень кислородного ингибирования фотосинтеза существенно снижается.

Эффект Варбурга проявляется не у всех растений, у ряда растений аридных пустынь обнаружен «антиэффект Варбурга» -- подавление фотосинтеза низкими концентрациями кислорода (1 % О2) (А. Т. Мокроносов, 1981, 1983). Исследования показали, что положительное или отрицательное влияние 02 на фотосинтез зависит от соотношения в листе фототрофных и гетеротрофных тканей. У растений, где фототрофные ткани составляют большую часть объема листа, при низком содержании кислорода проявляется усиление фотосинтеза. У растений, содержащих большую долю гетеротрофных тканей, в этих условиях проявляется «антиэффект Варбурга» -- подавление фотосинтеза в бескислородной среде. Это противоположное действие низких концентраций кислорода обусловлено сложным взаимодействием фотосинтеза, фотодыхания и темнового дыхания в клетках листа разного типа (фототрофных, гетеротрофных).

У С3-растений при естественном соотношении 02 и С02 (21 и 0,03 %) доля фотодыхания составляет 20 -- 30% от скорости фотосинтетического карбоксилирования.

Влияние температуры на фотосинтез

Интегральный ответ фотосинтетического аппарата на изменения температуры, как правило, может быть представлен одновершинной кривой. Вершина кривой зависимости фотосинтеза от температуры находится в области оптимальных для фотосинтеза температур. У разных групп высших растений максимальная скорость фотосинтеза соответствует различным значениям температур, что определяется адаптацией фотосинтетического аппарата к различным пределам температур. Так, для большинства С3-растений умеренной зоны произрастания оптимальная для фотосинтеза температура находится в интервале 20--25 °С. У растений с С4-путем фотосинтеза и с САМ-фотосинтезом температурный оптимум приходится на 30--35°С. Для одного и того же вида растения температурный оптимум фотосинтеза непостоянен. Он зависит от возраста растения, адаптации к определенным условиям температур и может изменяться в течение сезона. К Нижний предел температур, при которых еще наблюдается фотосинтез, колеблется от -15 (сосна, ель) до +3 °С; у большинства высших растений фотосинтез прекращается приблизительно при 0о.

Анализ кривой зависимости фотосинтеза от температуры показывает быстрое возрастание скорости фотосинтеза при повышении температуры от минимальной к оптимальной (Q10 = 2). Дальнейшее повышение температуры сверхоптимальной ведет к быстрому ингибированию процесса. Верхний предел температуры для поглощения С02 для большинства С3-растений находится в области 40--50 °С, для С4-растений -- при 50 --60 °С.

Зависимость фотосинтеза от температуры изучена на разных уровнях организации фотосинтезирующих систем. Наиболее термозависимыми в растении являются реакции углеродных циклов. Снижение интенсивности фотосинтеза в области сверхоптимальных температур объясняют снижением тургора в листьях и закрыванием устьиц в этих условиях, что затрудняет поступление углекислого газа к центрам его фиксации. Кроме того, при повышении температуры снижается растворимость С02, увеличивается отношение растворимостей 02/С02 и степень кислородного ингибирования, изменяются кинетические константы карбоксилирующих ферментов. Реакции транспорта электронов и синтеза АТФ, будучи по своей природе ферментативными процессами, также весьма чувствительны к температуре. Первичные же реакции фотосинтеза, связанные с поглощением света, миграцией энергии возбуждения и разделением зарядов в реакционных центрах, практически не зависят от температуры.

Влияние водного режима на фотосинтез

Значение водного режима для фотосинтеза определяется в первую очередь действием воды на состояние устьиц листа: до тех пор пока устьица остаются оптимально открытыми, интенсивность фотосинтеза не изменяется под влиянием колебаний водного баланса. Частичное или полное закрывание устьиц, вызванное дефицитом воды в растении, приводит к нарушению газообмена и снижению поступления углекислого газа к карбоксилирующим системам листа. Вместе с тем водный дефицит вызывает снижение активности ферментов ВПФ цикла, обеспечивающих регенерацию рибулозобисфосфата, и значительное ингибирование фотофосфорилирования. В результате в условиях водного дефицита наблюдается ингибирование фотосинтетической активности растений. Длительное действие дефицита воды может привести к снижению общей фотосинтетической продуктивности растений, в том числе и за счет уменьшения величины листьев, а значительное обезвоживание растений может в итоге вызвать нарушение структуры хлоропластов и полную потерю их фотосинтетической активности.

Различные стадии фотосинтеза в разной степени чувствительны к снижению содержания воды в тканях листа. Наиболее лабильны и быстрее всего ингибируются в условиях водного дефицита реакции фотофосфорилирования (при водном потенциале 11 бар), что обусловлено нарушением ультраструктуры сопрягающих мембран и разобщением транспорта электронов и фосфорилирования (R.Keck, Р. Воуеr, 1974). Транспорт электронов в целом более устойчив к обезвоживанию, однако потеря воды приводит к изменению конформационной лабильности мембранных белков и снижению скорости электронного потока. При дегидратации системы образуется жесткая матрица, в которой подвижность компонентов ЭТЦ понижена.

Высокочувствительны к обезвоживанию ферментативные реакции углеродных циклов. При низком водном потенциале значительно снижается активность ключевых ферментов -- РуБФ-карбоксилазы и глицеральдегидфосфатдегидрогеназы (W. Stewart, Lee, 1972; O.Bjorkman et al., 1980).

Фотосинтез в условиях светового, водного и температурного стресса. Адаптивные системы фотосинтеза

Напряженность любого внешнего фактора, выходящая за пределы нормы реакции генотипа, создает условия экологического стресса. Наиболее часто факторами экологического стресса дляназемных растений являются высокие интенсивности света, водный дефицит и предельные температуры.

В ряде работ исследовано влияние экстремальных условий освещения на активность фотосинтетического аппарата. Световое насыщение фотосинтеза у большинства растений находится в пределах 100--300тыс. эрг/см2*с; дальнейшее повышение интенсивности света может приводить к снижению скорости фотосинтеза. У теневыносливых растений световое насыщение достигается при значительно более низком освещении.

Обычно растения хорошо адаптированы к световому режиму местообитания. Адаптация достигается путем изменения количества и соотношения пигментов, размеров антенного комплекса, количества карбоксилирующих ферментов и компонентов электрон-транспортной цепи (О. Bjorkman, 1981). Так, у теневыносливых растений обычно ниже световой компенсационный пункт, больше размеры ФСБ и выше (3:1) отношение ФС И/ФС I (D. Fork, R. Govindjee, 1980). При резком изменении светового режима у растений, адаптированных к иным условиям освещения, происходит ряд нарушений в работе фотосинтетического аппарата. В условиях чрезмерно высокого освещения (более 300--400 тыс. эрг/см2с) резко нарушается биосинтез пигментов, ингибируются фотосинтетические реакции и ростовые процессы, что приводит в итоге к снижению общей продуктивности растений. В опытах с использованием мощных лазерных источников света показано (Т. Е. Кренделева и др., 1972), что световые импульсы, поглощаемые ФС I, значительно изменяют ряд фотохимических реакций: снижаются содержание П700, скорость восстановления акцепторов I класса (НАДФ+, феррицианид), скорость фотофосфорилирования. Действие лазерного облучения значительно уменьшает величину отношения Р/2е- и амплитуду быстрой компоненты фотоиндуцированного изменения поглощения при 520 нм. Авторы считают, что отмеченные выше изменения являются следствием необратимого повреждения реакционных центров ФС I.

Механизмы адаптации к различным интенсивностям света включают процессы, контролирующие распределение, использование и диссипацию поглощенной световой энергии. Эти системы обеспечивают эффективное поглощение энергии при низких уровнях освещения и сброс избыточной энергии при высокой освещенности. К ним относится процесс обратимого фосфорилирования белков светособирающих комплексов II (состояния 1 и 2), который контролирует относительное поперечное сечение поглощающих систем ФСI и ФС II. Защитные механизмы против фотоингибирования при высокой интенсивности света включают активируемые светом электрон-транспортные и сопряженные с ними эффекты (формирование циклических потоков вокруг ФС I и ФС II, виолаксантиновый цикл и др.), а также процессы дезактивации возбужденных состояний хлорофилла (A.Horton et al., 1989; Н.Г.Бу-хов, 2004).

Влияние водного дефицита на фотосинтез проявляется, прежде всего, в нарушении газообмена. Недостаток водоснабжения приводит к закрыванию устьиц, связанному с изменением содержания абсцизовой кислоты (АБК). Водный дефицит уже на уровне 1 -- 5 бар служит сигналом к быстрому увеличению количества АБК в листьях. В зависимости от генотипической устойчивости вида к засухе содержание АБК при потере воды в листьях возрастает от 20 до 100--200 раз, вызывая закрывание устьиц.

Устьичный аппарат регулирует поступление С02 в воздушные полости листа. Изменение ширины устьичной щели в зависимости от водного потенциала у разных видов высших растений определяется степенью их засухоустойчивости. В условиях водного дефицита, при закрывании устьичных отверстий, подавляется процесс фотосинтеза, ближний и дальний транспорт ассимилятов и снижается общий уровень продуктивности растений. При слабом водном дефиците отмечена временная активация фотосинтеза, дальнейшее увеличение дефицита воды приводит к значительным нарушениям активности фотосинтетического аппарата.

У растений С3- и С4-групп соотношение между фотосинтетической продуктивностью и водным балансом значительно различается. Для С4-растений характерно более экономное использование воды. Коэффициент транспирации, выражающий отношение количества транспирированной воды (в литрах), при образовании 1 кг сухого вещества у С4-растений значительно ниже: 250-350 л воды на 1 кг сухого вещества, у С3-растений - 600 -800. Последнее связано с функционированием у С4-растений специальных адаптивных механизмов, к числу которых относятся:

1. Кинетические свойства карбоксилирующих ферментов -- высокое сродство ФЕП-карбоксил азы к С02, а также более высокая ее удельная активность (в расчете на белок). Активность ФЕП-карбокеилазы (25 мкмольмг-1 мин-1) в 5--10 раз больше активности РуБФ-карбоксилазы (2 мкмоль*мг-1*мин-1). Это позволяет С4-растениям более эффективно осуществлять процесс фотосинтеза при слабо открытых устьицах.

2. Характерные для С4-растений более низкие значения сопротивления мезофилла диффузии С02 и более высокое сопротивление устьиц диффузии водяных паров. Последнее связано с меньшим числом устьиц на единицу поверхности листа и с меньшей величиной устьичных щелей.|

Эти анатомо-биохимические особенности С4-растений обеспечивают более высокую эффективность использования воды по сравнению с С3-растениями.

При закрывании устьиц концентрация С02 в хлоропластах снижается до компенсационного пункта, что нарушает процессы ассимиляции С02 и работу углеродных циклов. У С3-растений в этих условиях вследствие процесса фотодыхания продолжается функционирование электрон-транспортной цепи и потребление образующихся НАДФН и АТФ. Это отчасти защищает фотосинтетический аппарат С3-растений от фотоингибирования, которое вызывается избытком энергии при ограниченном снабжении С02 и интенсивном освещении. У С4-растений механизм, предохраняющий фотосинтетический аппарат от фотоповреждения, связан с транспортом углерода из клеток мезофилла в клетки обкладки. Способность к рециклизации С02 является одним из путей адаптации фотосинтетического аппарата к нарушению газообмена при водном дефиците.

Однако несмотря на эти защитные механизмы, в условиях водного стресса при интенсивном освещении происходит ингибирование транспорта электронов, процессов ассимиляции С02, снижение квантового выхода фотосинтеза.

В условиях обезвоживания ткани листа, по-видимому, не происходит синхронного обезвоживания хлоропластов. Как показывают электронно-микроскопические исследования, хлоропласт сохраняет свою нативную структуру даже при значительном водном дефиците в листе. Полагают, что хлоропласт может поддерживать водный гомеостаз даже при значительной потере воды растением. Однако при значительном водном дефиците происходит набухание хлоропластов и нарушение их тилакоидной структуры. Увеличение содержания АБК вследствие водного дефицита вызывает синхронное системное ингибирование функций фотосинтеза и роста. Нарушается система репликации, транскрипции I и трансляции, контролируемая генами ядра и хлоропласта, происходит деструкция полисом, нарушается деление и структурно- функциональная дифференцировка клеток и хлоропластов, блокируются процессы роста и морфогенез. В этих условиях резко подавляются энергетические процессы. И.А.Тарчевский (1982) предполагает, что блок АБК связан с нарушением функции сопрягающих мембран и ингибированием фотофосфорилирования, результатом чего является дефицит АТФ.

В природных условиях водный стресс часто сопряжен с температурным стрессом. Специфика организации фотосинтетического аппарата, анатомические и биохимические особенности отдельных групп растений, их адаптация к температурным условиям окружающей среды определяют различные интервалы температур, благоприятные для протекания фотосинтеза. Неодинаковую зависимость от температурных условий проявляют С3- и С4-группы растений. Температурный оптимум фотосинтеза у С4 растений находится в области более высоких температур (35 --45 °С), чем у С3-растений (20 -- 30 °С). Это обусловлено спецификой организации биохимических систем ассимиляции С02 у С4-растений и рядом адаптивных механизмов. За счет работы С4-цикла концентрация С02 в хлоропластах поддерживается на достаточно высоком уровне, что предотвращает кислородное ингибирование фотосинтеза и обеспечивает его высокую интенсивность в широком интервале температур. Ферментативный аппарат хлоропластов С4 -растений более активен при повышении температуры до 35 °С, в то время как у С3-растений при этих температурах отмечено ингибирование фотосинтеза.

Наиболее термозависимыми являются реакции углеродных циклов, для которых характерны высокие значения Q10: 2,0--2,5. Активность НАДФ-малатдегидрогеназы (маликоэнзим) в клетках обкладки у С4-растений значительно возрастает при повышении температуры до 39 °С за счет увеличения сродства фермента к субстрату. При этом увеличиваются активность декарбоксилирования малата, скорость его транспорта из клеток мезофилла в клетки обкладки, активируются карбоксилирующие системы (ФЕП-карбоксилаза) вследствие уменьшения ингибирующего действия малата как конечного продукта. Благодаря этому общая интенсивность фотосинтеза при высоких температурах у С4-растений выше, чем у Сз-растений.

Высокой степенью термочувствительности отличаются также реакции электронного транспорта. Все фотофизические и фотохимические реакции, протекающие в реакционных центрах, мало зависят от температуры, однако процессы переноса электронов между функциональными комплексами являются термозависимыми. Фотосистема II и сопряженные с нею реакции фотоокисления воды легко повреждаются при экстремальных температурах; фотосистема I более термостабильна.

Весьма чувствительны к температуре процессы фотосинтетического фосфорилирования. Наиболее благоприятен интервал температур 15--25 °С. У большинства высших растений повышение температуры выше 30--35° резко ингибирует реакции фотофосфорилирования, фотопоглощения протонов и активность каталитических центров CF. По-видимому, ингибирующее действие высоких температур на систему сопряжения связано с нарушением характера конформационных изменений, с изменением конформационных свойств белка. Повышение температуры искажает также нормальное функционирование сопрягающих мембран.

Высокая термоустойчивость фотосинтетического аппарата ряда сортов и видов растений связана со спецификой липидного состава мембран, физико-химических свойств мембранных белков, кинетическими свойствами ферментов пластид и рядом структурно-функциональных особенностей тилакоидных мембран. Одним из наиболее существенных факторов, определяющих устойчивость растений в стрессовых условиях, являются стабильность их энергетических систем и общий уровень энергообмена. Фонд АТФ обеспечивает восстановление нарушенных физиологических состояний, новообразование клеточных структур и нормализацию всего конструктивного обмена (В.Е.Петров, Н.Л.Лосева, 1986).

Зависимость фотосинтеза от засухи и температуры на уровне целого растительного организма оказывается еще более сложной, так как засуха в первую очередь тормозит ростовые процессы (деление и дифференцировку клеток, морфогенез). Это приводит к уменьшению «запроса» на ассимиляты со стороны морфогенеза, т. е. нарушается акцепторная функция в донорно-акцепторной системе, что вызывает торможение фотосинтеза через метаболитное и гормональное ингибирование.

Создание сортов сельскохозяйственных растений, сочетающих высокую термоустойчивость, засухоустойчивость и высокий уровень зерновой продуктивности является одной из важнейших проблем современной физиологической генетики и селекции.

В последние годы большое значение уделяется изучению действия на фотосинтез ряда техногенных экологических факторов, таких, как радиационное загрязнение, физические поля (электромагнитный «смог»), экология мегаполисов и др. В связи с этим возникает необходимость на новой молекулярно-генетической и физической основе расшифровать последовательность всех этапов адаптации основных реакций фотосинтеза ко всем видам природных и техногенных факторов.

Интенсивность фотосинтеза

В физиологии растений пользуются двумя понятиями: истинный и наблюдаемый фотосинтез. Это обусловлено следующими соображениями. Скорость или интенсивность фотосинтеза характеризуется количеством СО 2 , поглощенного единицей поверхности листа в единицу времени. Определение интенсивности фотосинтеза проводят газометрическим методом по изменению (уменьшению) количества СО 2 в замкнутой камере с листом. Однако, вместе с фотосинтезом идет процесс дыхания, во время которого выделяется СО 2 . Поэтому получаемые результаты дают представление об интенсивности наблюдаемого фотосинтеза. Для получения величины истинного фотосинтеза необходимо сделать поправку на дыхание. Поэтому перед опытом определяют в темноте интенсивность дыхания, а потом уже интенсивность наблюдаемого фотосинтеза. Затем количество СО 2 , выделенного при дыхании, прибавляют к количеству СО 2 , поглощенного на свету. Внося эту поправку, считают, что интенсивность дыхания на свету и в темноте одинакова. Но эти поправки не могут дать оценку истинного фотосинтеза потому, что, во-первых, при затемнении листа исключается не только истинный фотосинтез, но и фотодыхание; во-вторых, так называемое темновое дыхание в действительности зависит от света (см. дальше).

Поэтому во всех экспериментальных работах по фотосинтетическому газообмену листа отдают преимущество данным по наблюдаемому фотосинтезу. Более точный метод изучения интенсивности фотосинтеза – метод меченных атомов (измеряют количество поглощенного 14 СО 2).

В том случае, когда пересчет количества поглощенного СО 2 на единицу поверхности трудно провести (хвойные, семена, плоды, стебель), полученные данные относят к единице массы. Учитывая, что фотосинтетический коэффициент (отношение объема выделенного кислорода к объему поглощенного СО 2 равен единице, скорость наблюдаемого фотосинтеза можно оценивать по количеству миллилитров кислорода, выделенной единицей площади листа за 1 час.

Для характеристики фотосинтеза пользуются и другими показателями: квантовый расход, квантовый выход фотосинтеза, ассимиляционное число.

Квантовый расход – это отношение количества поглощенных квантов к количеству ассимилированных молекул СО 2 . Обратная величина названа квантовым выходом .

Ассимиляционное число – это соотношение между количеством СО 2 и количеством хлорофилла, который содержится в листе.

Скорость (интенсивность) фотосинтеза – один из важнейших факторов, влияющих на продуктивность с/х культур, а значит и на урожай. Поэтому выяснение факторов, от которых зависит фотосинтез, должно вести к усовершенствованию агротехнических мероприятий.

Теоретически скорость фотосинтеза, как и скорость любого многостадийного биохимического процесса, должна лимитироваться скоростью самой медленной реакции. Так, например, для темновых реакций фотосинтеза нужны НАДФН и АТФ, поэтому темновые реакции зависят от световых реакций. При слабой освещенности скорость образования этих веществ слишком мала, чтобы обеспечить максимальную скорость темновых реакций, поэтому свет будет лимитирующим фактором.

Принцип лимитирующих факторов можно сформулировать следующим образом: при одновременном влиянии нескольких факторов скорость химического процесса лимитируется тем фактором, который ближе всех к минимальному уровню (изменение именно этого фактора будет непосредственно влиять на данный процесс).

Этот принцип впервые был установлен Ф. Блекманом в 1915 г. С тех пор было неоднократно показано, что разные факторы, например концентрация СО 2 и освещенность, могут взаимодействовать между собой и лимитировать процесс, хотя часто один из них все же главенствует. Освещенность, концентрация СО 2 и температура – вот те главные внешние факторы, влияющие на скорость фотосинтеза. Однако большое значение имеет также водный режим, минеральное питание и др.

Свет. При оценке действия света на тот или иной процесс важно различать влияние его интенсивности, качества (спектрального состава) и времени экспозиции на свету.

При низкой освещенности скорость фотосинтеза пропорциональна интенсивности света. Постепенно лимитирующими становятся другие факторы, и увеличение скорости замедляется. В ясный летний день освещенность составляет примерно 100 000 лк, а для светового насыщения фотосинтеза хватает 10 000 лк. Поэтому свет обычно может быть важным лимитирующим фактором в условиях затенения. При очень большой интенсивности света иногда начинается обесцвечивание хлорофилла, и это замедляет фотосинтез; однако в природе, растения находящиеся в таких условиях, обычно тем или иным образом защищены от этого (толстая кутикула, опущенные листья и т. п.).

Зависимость интенсивности фотосинтеза от освещенности описывается кривой, которая получила название световой кривой фотосинтеза (рис. 2.26).

Рис. 2.26. Зависимость интенсивности фотосинтеза от освещенности (световая кривая фотосинтеза): 1 – скорость выделения СО 2 в темноте (скорость дыхания); 2 – компенсационная точка фотосинтеза; 3 – положение светового насыщения

При слабом освещении в процессе дыхания выделяется больше СО 2 , чем связывается его в процессе фотосинтеза, поэтому начало световой кривой с осью абсцисс – компенсационная точка фотосинтеза, которая показывает, что в этом случае при фотосинтезе используется ровно столько СО 2 , сколько его выделяется при дыхании. Иными словами, со временем наступает такой момент, когда фотосинтез и дыхание будут точно уравновешивать друг друга, так что видимый обмен кислорода и СО 2 прекратиться. Световая точка компенсации – это такая интенсивность света, при которой суммарный газообмен равен нулю.

Световые кривые одинаковы не для всех растений. У растений, которые растут на открытых солнечных местах, поглощение СО 2 увеличивается до тех пор, пока интенсивность света не будет равна полному солнечному освещению. У растений, которые растут на затененных местах (например, кислица), поглощение СО 2 увеличивается только при малой интенсивности света.

Все растения по отношению к интенсивности света делят на световые и теневые, или светолюбивые и теневыносливые. Большинство с/х растений является светолюбивыми.

У теневыносливых растений, во-первых, световое насыщение происходит при более слабом освещении, во-вторых, в них компенсационная точка фотосинтеза наступает раньше, т. е. при меньшей освещенности (рис. 2.27).


Последнее связано с тем, что теневыносливые растения отличаются малой интенсивностью дыхания. В условиях слабой освещенности интенсивность фотосинтеза выше у теневыносливых растений, а при сильном свете, наоборот, – у светолюбивых.

Интенсивность света влияет и на химический состав конечных продуктов фотосинтеза. Чем выше освещенность, тем больше образуется углеводов; при низкой освещенности – больше органических кислот.

Опыты в лабораторных условиях показали, что на качество продуктов фотосинтеза влияет и резкий переход «темнота – свет» и наоборот. Сначала после включения света высокой интенсивности преимущественно образуются неуглеводные продукты из-за недостатка НАДФН и АТФ, и только через некоторое время начинают образовываться углеводы. И наоборот, после выключения света листья не сразу теряют способность к фотосинтезу, потому что на протяжении нескольких минут в клетках остается запас АТФ и НАДФ.

После выключения света сначала тормозится синтез углеводов и только потом органических веществ и аминокислот. Основная причина этого явления обусловлена тем, что торможение превращения ФГК в ФГА (и через него в углеводы) происходит раньше, чем торможение ФГК в ФЕП (и через него в аланин, малат и аспарат).

На соотношение образующих продуктов фотосинтеза влияет и спектральный состав света. Под влиянием синего света в растениях увеличивается синтез малата, аспартата и других аминокислот и белков. Эта реакция на синий свет выявлена и в С 3 -растениях и в С 4 -растениях.


Спектральный состав света влияет и на интенсивность фотосинтеза (рис. 2.28). Рис. 2.28. Спектр действия фотосинтеза листьев пшеницы

Спектр действия – это зависимость эффективности химического (биологического) действия света от длины его волны. Интенсивность фотосинтеза в разных участках спектра неодинакова. Максимальная интенсивность наблюдается при освещении растений теми лучами, которые максимально поглощаются хлорофиллами и другими пигментами. Интенсивность фотосинтеза наиболее высокая в красных лучах, потому что она пропорциональна не количеству энергии, а количеству квантов.

Из суммарного уравнения фотосинтеза:

6СО 2 + 6Н 2 О → С 6 Н 12 О 6 + 6О 2

следует, что для образования 1 моля глюкозы нужно 686 ккал; это значит, что для ассимиляции 1 моля СО 2 нужно 686: 6 = 114 ккал. Запас энергии 1 кванта красного света (700 нм) равен 41 ккал/энштейн, а синего (400 нм) 65 ккал/энштейн. Минимальный квантовый расход при освещении красным светом равен 114: 41 ≈ 3, а в действительности тратиться 8–10 квантов. Таким образом, эффективность использования красного света 114/41 · 8 = 34 %, а синего 114/65 ·8 = 22 %.

Концентрация СО 2 . Для темновых реакций нужна двуокись углерода, которая включается в органические соединения. В обычных полевых условиях именно СО 2 является главным лимитирующим фактором. Концентрация СО 2 в атмосфере составляет 0,045 %, но если повышать ее, то можно увеличить и скорость фотосинтеза. При кратковременном действии оптимальная концентрация СО 2 составляет 0,5 %, однако при длительном воздействии возможно повреждение растений, поэтому оптимум концентрации в этом случае ниже – около 0,1 %. Уже сейчас некоторые тепличные культуры, например томаты, стали выращивать в атмосфере, обогащенной СО 2 .

В настоящее время большой интерес вызывает группа растений, которые намного эффективнее поглощают СО 2 из атмосферы и поэтому дают более высокий урожай – так называемые С 4 -растения.

В искусственных условиях зависимость фотосинтеза от концентрации СО 2 описывается в углекислотной кривой, которая напоминает световую кривую фотосинтеза (рис.2.29).

При концентрации СО 2 0,01 % скорость фотосинтеза равна скорости дыхания (компенсационная точка). Углекислотное насыщение наступает при 0,2–0,3 % СО 2 , а у некоторых растениях даже при этих концентрациях наблюдается небольшое увеличение фотосинтеза.

Рис. 2.29. Зависимость интенсивности фотосинтеза хвои сосны от концентрации СО 2 в воздухе

В природных условиях зависимость фотосинтеза от концентрации СО 2 описывается только линейной частью кривой. Отсюда следует, что обеспеченность растений СО 2 в природных условиях является фактором, который лимитирует урожай. Поэтому целесообразно выращивать растения в закрытых помещениях с повышенным содержанием СО 2 .

Температура оказывает заметное влияние на процесс фотосинтеза, поскольку темновые, а отчасти и световые реакции фотосинтеза контролируются ферментами. Оптимальная температура для растений умеренного климата обычно составляет около 25 о С.

Поглощение и восстановление СО 2 у всех растений с повышением температуры увеличиваются, пока не будет достигнут некоторый оптимальный уровень. У большинства растений умеренной зоны снижение интенсивности фотосинтеза начинается уже после 30 о С, у некоторых южных видов после 40 о С. При большой жаре (50–60 о С), когда начинается инактивация ферментов, а также нарушается согласованность разных реакций, фотосинтез быстро прекращается. По мере повышения температуры интенсивность дыхания повышается значительно быстрей, чем интенсивность естественного фотосинтеза. Это влияет на величину наблюдаемого фотосинтеза. Зависимость интенсивности наблюдаемого фотосинтеза от температуры описывается температурной кривой, в которой выделяют три основные точки: минимум, оптимум и максимум.

Минимум – та температура при которой фотосинтез начинается, оптимум – температура, при которой фотосинтез наиболее устойчивый и достигает наибольшей скорости, максимум – та температура, после достижения которой фотосинтез прекращается (рис. 2.30).

Рис. 2.30. Зависимость интенсивности фотосинтеза от температуры листа: 1 – хлопчатник; 2 – подсолнечник; 3 – сорго

Влияние кислорода . Более полувека назад было отмечено на первый взгляд парадоксальное явление. Кислород воздуха, который является продуктом фотосинтеза, является одновременно и его ингибитором: выделение кислорода и поглощение СО 2 падают по мере увеличения концентрации О 2 в воздухе. Этот феномен назвали именем его открывателя – эффект Варбурга. Этот эффект присущ всем С 3 -растениям. И только в листьях С 4 -растений его не удалось выявить. Сейчас твердо установлено, что природа эффекта Варбурга связана с оксигеназными свойствами основного фермента цикла Кальвина – РДФ-карбоксилазы. При большой концентрации кислорода начинается фотодыхание. Установлено, что при снижении концентрации О 2 до 2–3 % фосфогликолат не образуется, исчезает и эффект Варбурга. Таким образом, оба эти явления – проявление оксигеназных свойств РДФ-карбоксилазы и образование гликолата, а также уменьшение фотосинтеза в присутствии О 2 тесно связаны один с другим.

Очень низкое содержание О 2 или полное отсутствие, как и увеличение концентрации до 25–30 %, тормозит фотосинтез. Для большинства растений некоторое снижение природной концентрации (21 %) О 2 активирует фотосинтез.

Влияние оводненности тканей . Как уже отмечалось, вода участвует в световой стадии фотосинтеза как донор водорода для восстановления СО 2 . Однако, роль лимитирующего фотосинтез фактора играет не минимальное количество воды (приблизительно 1 % поступившей), а та вода, которая входит в состав клеточных мембран и является средой для всех биохимических реакций, активирует ферменты темновой фазы. Кроме того, от количества воды в замыкающих клетках зависит степень открытия устьиц, а тургорное состояние всего растения определяет расположение листьев по отношению к солнечным лучам. Количество воды косвенно влияет на изменение скорости отложения крахмала в строме хлоропласта и даже на изменение структуры и расположение тилакоидов в строме.

Зависимость интенсивности фотосинтеза от оводненности тканей растений, как и зависимость от температуры, описывается переходной кривой, имеющей три основные точки: минимум, оптимум и максимум.

При обезвоживании меняется не только интенсивность фотосинтеза, но и качественный состав продуктов фотосинтеза: меньше синтезируется малата, сахарозы, органических кислот; больше – глюкозы, фруктозы аланина и других аминокислот.

К тому же установлено, что при нехватке воды в листьях накапливается АБК – ингибитор роста.

Концентрация хлорофилла , как правило, не бывает лимитирующим фактором, однако количество хлорофилла может уменьшаться при различных заболеваниях (мучнистая роса, ржавчина, вирусные болезни), недостатке минеральных веществ и с возрастом (при нормальном старении). Когда листья желтеют, говорят, что они становятся хлоротичными, а само явление называют хлорозом. Хлоротические пятна на листьях часто бывают симптомом заболевания или недостатка минеральных веществ.

Хлороз может быть вызван и недостатком света, так как свет нужен для конечной стадии биосинтеза хлорофилла.

Минеральные элементы. Для синтеза хлорофилла нужны и минеральные элементы: железо, магний и азот (два последних элемента входят в его структуру), потому они особенно важны для фотосинтеза. Важен также калий.

Для обычного функционирования фотосинтетического аппарата растение должно быть обеспечено необходимым количеством (оптимальным) минеральных элементов. Магний, кроме того, что входит в состав хлорофилла, участвует в действии сопрягающих белков при синтезе АТФ, влияет на активность реакций карбоксилирования и восстановление НАДФ + .

Железо в восстановленной форме необходимо для процессов биосинтеза хлорофилла и железосодержащих соединений хлоропластов (цитохромов, ферредоксина). Нехватка железа нарушает циклическое и нециклическое фотофосфорилирование, синтез пигментов, изменение структуры хлоропластов.

Марганец и хлор принимают участие в фотоокислении воды.

Медь входит в состав пластоцианина.

Недостаток азота оказывает влияние не только на формирование пигментных систем и структур хлоропластов, но и на количество и активность РДФ-карбоксилазы.

При недостатке фосфора нарушаются фотохимические и темновые реакции фотосинтеза.

Калий играет полифункциональную роль в ионной регуляции фотосинтеза, при его недостатке в хлоропластах разрушается структура гран, устьица слабо открываются на свету и недостаточно закрываются в темноте, ухудшается водный режим листа, т. е. нарушаются все процессы фотосинтеза.

Возраст растений. Только после создания фитотронов, где можно выращивать растения в контролируемых условиях, удалось получить надежные результаты. Выявлено, что во всех растениях только в самом начале жизненного цикла, когда формируется фотосинтетический аппарат, интенсивность фотосинтеза увеличивается, очень быстро достигает максимума, затем немного уменьшается и дальше меняется очень мало. Например, у злаков фотосинтез достигает максимальной интенсивности в фазу кущения. Это объясняется тем, что максимальная фотосинтетическая активность листа совпадает с окончанием периода его формирования. Затем начинается старение и уменьшение фотосинтеза.

Интенсивность фотосинтеза зависит в первую очередь от структуры хлоропластов. При старении хлоропластов разрушаются тилакоиды. Доказывают это с помощью реакции Хила. Она идет тем хуже, чем больший возраст хлоропластов. Таким образом, показано, что интенсивность определяется не количеством хлорофилла, а структурой хлоропласта.

В оптимальных условиях влажности и азотного питания снижение фотосинтеза с возрастом происходит медленнее, так как в этих условиях хлоропласты медленнее стареют.

Генетические факторы. Процессы фотосинтеза в определенной степени зависят от наследственности растительного организма. Интенсивность фотосинтеза различна у растений разных систематических групп и жизненных форм. У трав интенсивность фотосинтеза выше, чем у древесных растений (табл. 2.5).



Есть вопросы?

Сообщить об опечатке

Текст, который будет отправлен нашим редакторам: